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Introduction

T HE desire to � nd the most ef� cient � ight path has a long his-
tory.The developmentof the � rst high-performancejet aircraft

made it crucial to � y a close to optimal path to perform a given mis-
sion before the fuel ran out. The earliest methods for � nding opti-
mal trajectorieswere based on calculusof variations.Discretization
of the optimality conditions and solution using numerical methods
made it possible to solve quite complicated problems; see Bryson
and Desai1 for a discussion on early strategies.

In recent years, the most common approach is to discretize the
differential algebraic equations (DAEs) before stating optimality
conditions and applying numerical methods. This strategy was pio-
neeredby HargravesandParis,2 who used the NPSOL3 optimization
package.Recentdevelopmentsin discretizationofDAEs4 andsparse
nonlinearoptimizationmethods5 ¡ 8 represent the current state of the
art in trajectory optimization.

Although many papers appear in the open literatureon the devel-
opment of numerical methods for solving trajectory optimization
problems, very few papers are available discussing the dif� culties
involved in trying to follow a numerically computed trajectory in
a real � ight test. The purpose of the present paper is to report on a
simple � ight test that was performed to demonstrate the dif� culties
that may appear in a � ight test.

This paper describes the model and numerical implementation
used to calculateoptimal trajectories.The presentationof numerical
results then follows with the results obtained in the � ight test for a
particular test case.

Performance Model
The equations of motion for the aircraft assuming a point mass

model are given by the system of ordinary differential equations

m ÇV = T cos( a + ²) ¡ D ¡ mg sin c (1)

mV Çc = T sin( a + ²) + L ¡ mg cos c (2)

Çh = V sin c (3)

ÇxE = V cos c (4)

Çm f = ¡ b (5)

where m is aircraft mass, T engine thrust, a angle of attack,
D drag, g gravity acceleration, c � ight-path angle, L lift, h alti-
tude, xE distance traveled, and b fuel burn. The mass of the aircraft
is split in two parts so that m is the sum of a � xed part and the fuel
mass m f , which is treated as a state variable. The angle ² de� nes
the angle of the engine thrust to the � xed body coordinate axis.

The lift and drag are de� ned through tables of nondimensional
aerodynamic coef� cients dependent on the state in terms of Mach
number, altitude, and position of center of gravity. Each aerody-
namic coef� cient is modeled as a smooth function using a least-
squares � t of B-spline basis functions to the tabular data. The re-
lations between airspeed V , Mach number M , and air density at
different altitudes are given through the de� nition of the standard
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atmosphere (ISA). The atmospheric model is also de� ned for arbi-
trary constant temperature shifts from the ISA de� ning the relation
between pressure altitude and geopotential altitude.

De� ning a smooth model of engine thrust and fuel burn as func-
tions of altitude,Mach number, engine control setting, and possibly
temperature requires the solution of fairly large least-squaresprob-
lems.The enginemodel is given in tabularform listing the thrustand
fuel burn for given values of Mach number, pressure altitude, thrust
control setting, and ISA condition. Currently, the model assumes
that the ISA condition is � xed leaving three independent variables
for the thrust and fuel burn functions.

Trajectory Optimization
The equations of motion de� ned by Eqs. (1–5) can be rewritten

in brief form as

Çx = f (x, u) (6)

where the vector of state variables is x = (V , h, xE , m f , c )T and the
vector of controls u = ( a , d T )T . Additional requirements are imple-
mented as purely algebraic constraints in the form

g · g(x, u) · ḡ (7)

where g and ḡ are lower and upper bounds on the algebraic con-
straints.

By investigatingthe equationsof motion more closely,we can be
observethat the distancestate variablexE is not explicitlydependent
on the control variables. Further, none of the other state equations
depend on xE making it possible to evaluate the distance at any
instanceby integratingthe time historiesof V and c . Consequently,
the distance may be de� ned as the algebraic function

xE (tF ) = * tF

t = 0

V (t ) cos c (t ) dt (8)

Signi� cant amounts of testing have shown that it appears easier to
solve the trajectory optimization problem if the range xE is imple-
mented as the algebraic constraint (8) as opposed to considering xE

as a state variable in Eq. (6). The number of state variables is re-
duced by 20% at the cost of an additional algebraic constraint.The
drawback is that the algebraic constraint (8) in this form depends
on all of the state variables giving a dense row in the constraint
Jacobian of the discretized optimization problem.

Currently, the differential and algebraic constraints are de� ned
so that the state variables are x = (V , h, m f , c )T keeping the dis-
tance (8) together with the algebraic constraints (7). The other al-
gebraic constraints currently implemented concern load factor n Z ,
dynamic pressure, lift coef� cient, Mach number, and indicated air-
speed Vi .

To solve a minimum � nal time optimizationproblem, it is neces-
sary to introducethe nondimensionaltime t̂ = t / tF , where tF denotes
the � nal time. The differential equation de� ned in nondimensional
time becomes

dx

dt̂
= tF f (x, u) (9)

This way, the � nal time tF is free to be used as a variable in the
discretized optimization problem.

Discretization

The DAEs de� ned by Eqs. (6) and (7) are discretized using
Hermite–Simpson collocation4 so that state variables x are approx-
imated as piecewise cubic polynomial functionsof nondimensional
time. The control variables u are approximated as piecewise linear
functions of nondimensional time. The differential equations are
satis� ed in an integral sense on each time step. The algebraic con-
straints are enforced both in an integral sense on each time step but
also at the endpoints of each time step.

The discretizationprocess transformsthe differentialequationsto
algebraic equations dependent on the state and control variables at
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selecteddiscretizationnodal time points. All of the discretizedstate
and control variables are stored in the � nite-dimensional vector y
togetherwith the � nal time variable tF . The differentialand algebraic
equations can now be stated as a set of purely algebraic equations
dependent on the vector y as

li · ci ( y) · ūi , i = 1, . . . , nc (10)

where l and ū de� ne lower and upper bounds on the nonlinear
constraints. Equality constraints are simply enforced by setting the
lower and upper bounds to be equal.

Optimization

By the de� ning of an objective function, such as minimum time
used for a given mission, it is now possible to formulate the opti-
mization problem as

min
y

f0( y) (11)

l · [ c( y)

y ] · ū (12)

where f0 is the objective function. The vectors containing all of
the constraint lower and upper bounds are denoted l and ū, respec-
tively. The path constraints on the state and control variables are
implemented as the simple bound constraints on the elements of y.

Current optionsfor the choice of objectivefunction includes total
� ight time tF , fuelmass, or distance.Switchingfromminimizationto
maximization is simply done by changing the sign of the objective.
There is also a possibilityto minimize the deviationfrom a reference
value of Mach number, altitude, or calibrated airspeed. This last
feature is useful when analyzing the reference cases de� ned in the
� ight manual that usually involves keeping one of these quantities
constant for part of the mission.

The optimizationproblem(11–12) is usuallyquite large involving
many thousands of variables and constraints. Although large scale,
the constraint function derivatives are usually quite sparse making
ef� cient numerical solutionpossible. In this investigation,SNOPT9

is used to solve the optimization problems inasmuch as it is avail-
able through collaborationwith the developmentgroup at Stanford
University and the University of California, San Diego.

Flight Testing: Saab J35 Draken
There is no substitute for � ight testing if the objective is to de-

velop a computational model for trajectory optimization that is to
be used in practice. However, the number of uncertainties involved
in a � ight test are numerous, and it can be dif� cult to establish if
there are errors or inaccuracies in the computational model. The
major uncertainties involved concern the pilot’s ability to follow a
complex trajectory and the accuracy of the weather model. Further
uncertaintiesalso concern the engine model because there is signif-
icant variation between engine individuals, in particular for older
aircraft with many hours of use.

The tests presented in this report have been performed by the
second� ghterwingof theSwedishAir ForcebaseF10 in Ängelholm
in southern Sweden.

The venerable Saab J35 Draken is a single engine supersonic in-
terceptor of 1950s design. The planform is quite unusual featuring
a double delta wing. Later versions were reportedly Mach 2+ ca-
pable in the right circumstances. The aircraft was retired from the
Swedish Air Force in December 1998 but is still in service with the
Austrian Air Force.

The test presented here was performedduring the last days of ac-
tive service in November1998.The test aircraftwas the J35 Draken,
serial number35601,which was manufacturedin 1970and later up-
graded to the J standard. Originally, the test involved two different
cases: one minimum time to climb trajectory and one acceleration
in level � ight. Unfortunately,it was only possible to perform the ac-
celeration case. Because of congested air traf� c in the test area, the
pilot had to abandon the minimum time to climb in both attempts.

Table 1 Initial and � nal conditions
for the J35 Draken acceleration

Parameter Initial Final

M 0.8 1.2
h , km 8 8
c , rad 0 0

Fig. 1 Optimum acceleration trajectory for the J35 Draken.

Fig. 2 Flight-test results for the reference (top) and optimum acceler-
ation trajectories.

The acceleration case involves starting at Mach 0.8 at an altitude
of 8 km in level � ight and accelerating to Mach 1.2 at the same
altitude using full thrust with afterburner. The case is speci� ed in
Table 1. The acceleration was performed keeping altitude constant
at 8 km giving a reference trajectory to be used for comparisonwith
the optimal trajectory.

Solving the optimization problem using the data in Table 1 as
initial and � nal conditions gives the optimal trajectory shown in
Fig. 1. Nondimensionalaltitudeh0 and time s are used in the graphs
because detailed information about performance is still classi� ed.
The optimum trajectory shown in Fig. 1 involves a shallow dive
quickly reaching the optimal climb speed, which is maintaineduntil
the aircraft reaches an altitude of approximately 10 km. The last
part of the trajectory involves a dive to supersonic speed reaching
the � nal Mach number in level � ight.

The test � ight of the reference trajectory was straightforward to
perform. Two runs were made, which are shown in the top part
of Fig. 2 together with the results obtained using the computational
model. The aircraft lacks any means of storingstate variablesduring
� ight for postprocessing,and so the experimentaldata shown in the
graphs are from notes taken by the pilot during � ight.

Testing the optimal trajectory was considered more dif� cult and
so a few practice runs were made in a simulator. The � ight test of
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the optimal trajectory was then performed twice giving the slight
differences shown in Fig. 2. However, the difference between the
two � ight tests is less than the difference between the � ight tests
and the computation, showing the excellent skills of the pilot in
followingthe prescribedtrajectory.Further, it was very encouraging
to see that the theoreticallypredicted time reduction of 28% was so
closely reproduced in the � ight test, which gave a time reduction of
approximately 30%.

Conclusions
It was expected that the ability of the pilot to follow the desired

trajectory would be the main uncertainty in the test. However, the
present case and further testing currently in progress suggest that
it is indeed quite possible to follow even quite complex trajectories
with a bit of training in a simulator. However, the longer term goal
is to compute the desired trajectory in close to real time and then let
an autopilot � y the trajectory signi� cantly reducing pilot workload.

Apart from the uncertainty in engine performance already men-
tioned, a much more signi� cant uncertaintyappears to be the atmo-
sphericmodel. Standard procedure calls for using the ISA, possibly
modi� ed with a constant temperature shift. However, investigat-
ing the atmospheric variation as a function of altitude during the
tests showed that the conditions are not often well represented by a
model involvinga constant temperature shift from the ISA. Instead,
the model should be based on local information,where temperature
and static pressure are given as functions of geopotential altitude.
This information is available from the weather service at F10 but is
not yet implemented in the computationalmodel.

A signi� cant computational dif� culty that often appears when
solving trajectory optimization problems is the robustness of the
solution method. The optimization problem [Eqs. (11) and (12)] is
highly nonlinear,and the algorithmdoes in practicenot always con-
verge to a local optimum.A particularcase where the algorithmmay
fail is when the local quadraticprogrammingmodel of Eqs. (11) and
(12), used to de� ne the next approximation to the solution,does not
have a feasible solutioneven though the original nonlinear problem
has a solution.The sequentialquadraticprogrammingmethod9 used
herehas the facility to dealwith this casebut it doesnot always work.
Further dif� culties arise when there indeed is no feasible point to
the constraints (12). Deciding whether or not there exists a feasi-
ble solution is a problem that is at least as dif� cult as solving the
optimization problem itself.

Despite the occasional dif� culties described, it is still possible
to solve quite general performance optimization problems using
the method described. Problems such as a brief acceleration or a
climb problem, as well as maximum range problems, can be solved
using the same optimizationmethod.Furthermore, the limited � ight
testing performed also suggest that the results may be quite useful
in practice.
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Introduction

M ODERN multipurpose military aircrafts are often equipped
with several types of wing-mounted external stores. Gener-

ally, external stores are placedon the undersurfaceand tip of aircraft
wing as extra fuel tanks or weapons such as missiles, bombs, rock-
ets, and gun pods. In the transonic and low-supersonic speeds there
is strong shock interference between the wing and the pylon/store,
which causes a severe vibration of the aircraft wing such as � utter,
limit cycle oscillation, and buffet, etc. If the aircraft is under the
continuous vibration condition as just mentioned, there are critical
structural and fatigue damages of wing structures. So, the correct
prediction of instability such as � utter is essential. A typical � ut-
ter analysisrequiresseveralunsteadyaerodynamiccomputations.In
addition,suchcomputationsusingthemethodof computational� uid
dynamics are quite expensive in the transonic and low-supersonic
regime. Therefore, the development of ef� cient and accurate com-
putational codes for the unsteady aerodynamics is very important
for the � utter analysis.

The detailed wind-tunnel experiments for the F-5 � ghter wing
had been conducted at the National Aerospace Laboratory of the
Netherlands (NLR) under the sponsorship of the U.S. Air Force.1

It could be shown from NLR’s experiments that there was clearly a
strong in� uence of the underpylon/store on the steady and unsteady
transonic aerodynamics. From the 1970s there were great efforts to
develop ef� cient unsteady aerodynamic codes based on the three-
dimensional transonic small-disturbance (TSD) theory. As the re-
sults of previous researches, the famous and very ef� cient codes
such as ATRAN3S2,3 and CAP-TSD4,5 have been developed and
veri� ed for several application cases.
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